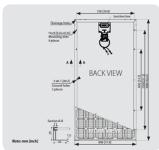

End-of-Life Heavymetal Release from Photovoltaic and Quantum Dot Enabled Panels


FRANK C. BROWN¹, YUQIANG BI¹, SHAUHRAT S. CHOPRA²,
JARED SCHOEPF¹, JASMINA MARKOVSKI¹, KIRIL D. HRISTOVSKI¹,
PAUL WESTERHOFF¹, THOMAS L. THEIS²

¹ARIZONA STATE UNIVERSITY ²UNIVERSITY OF ILLINOIS - CHICAGO

Introduction

- Photovoltaic panels (PVs) and quantum dot displays (QDD) are starting to see increases in commercial and consumer product use.
- Both utilize toxic and/or carcinogenic elements.
 - Cd, Cr, In, Se, Pb, Ag, Zn, Ni, Be...
- Next generation PVs and QDD may employ similar manufacturing process.
 - Use of similar materials
 - Need to protect solar cells/display films leads to product encapsulation
 - Can impact the mobility of elements in both panels and displays

Solar Cell	Mono-crystalline 125×125mm (5inch)	
No. of Cells	72 (6×12)	
Dimensions	1580×808×35mm (62.2×31.8×1.4inch)	
Weight	15.5kg (34.1lbs.)	
Front Glass	3.2 mm (0.13inch) tempered glass	
Frame	Anodized aluminium alloy	
Junction Box	IP65 rated	
Output Cables	AIW (12AWG), asymmetrical lengths (-) 1200m (47.2inch) and (+) 800mm (31.5inch), MC Plug Type IV connectors	
Temperatu	re Coefficients	
Nominal Operation	ng Cell Temperature (NOCT) 45°C±2°C	

Current-Voltage & Power-Voltage Curve (170W)

Temperature Dependence of Isc, Voc, Pmax

Open Questions and Concerns

- 1st generation products are nearing end of expected life span.
 - Lack of waste classification data.
 - Little information on leachate contaminant concentrations.
 - No USEPA classification as Solid or Hazardous waste per 40 CFR 261.24 subpart D.
- Recycling/reuse options limited.
 - Burgeoning waste stream with little preexisting recycling options.
 - What materials are recoverable?
 - What is the monetary value and does it offset recycling costs?
 - Most PVs are decommissioned once actual power output falls below 80% of rate power output.
 - Are the any applications for PVs after reduction in power output?
 - Why recycle/reuse?
 - Unlike EU, EPA does not regulate PV waste.
 - No regulation > No disposal fine > Low disposal cost > No incentive to recycle
- Lack of environmental impact data.
 - Are contaminant concentrations/mobility sufficiently high to leach into environment if improperly disposed?
 - How is proper disposal dictated without waste classification?
- Next generations of PVs anticipated to be nano-enabled.
 - What can we learn from existing PV and nano-enabled technology about End-of-Life?

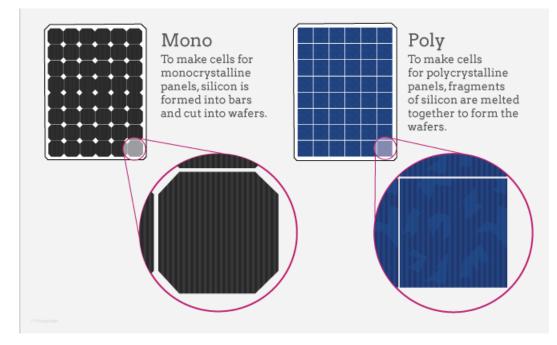
Goal

- Through End-of-Life (EoL) heavy metal release analysis we hope to:
 - Use QD EoL studies to forecast potential environmental impacts of subsequent generations of PVP
 - Evaluate concerns for Hazardous waste classification
 - Examine if RCRA Land Disposal Restrictions (LDR) Rule may apply
- Underlying question: Should we worry that next generation QD enabled PVs could be considered RCRA hazardous waste?

Methodology

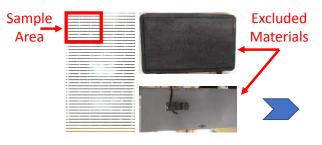
- 3 test methods were used to determine and compare leachable and total contaminant concentrations.
 - USEPA SW846 method 1311, Toxicity Characteristic Leaching Procedure (TCLP).
 - 22 CCR Appendix II (f), Waste Extraction Testing (WET)
 - PVs only
 - USEPA SW846 method 3050,
- TCLP and WET both use weak acid extraction fluids.
 - TCLP- Glacial acetic acid/Sodium Hydroxide (pH~4.93±0.05)
 - WET- Citric acid/Sodium hydroxide (pH~5.0±0.1)
- TCLP/WET procedure are similar with slight variations.
- Analysis performed via Inductively Couple Plasma; OES (PVP), MS (QDD)

	TCLP	WET
EF to Waste ratio (m/m)	20:1	10:1
Minimum sample size (g)	100	50
Agitation duration (hrs.)	18 <u>+</u> 2	~48
Filter size	0.7 μm	0.45 μm
Sample purge	yes	no



Methodology PV PANELS

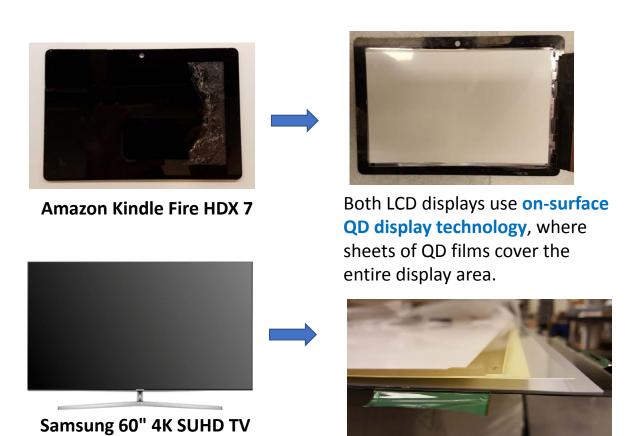
Sharp ND u1673A Polycrystalline

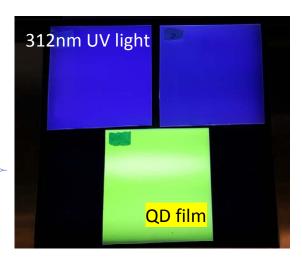

From https://www.energysage.com/solar/101/monocrystalline-vs-polycrystalline-solar-panels/

Sharp NT 175U1 Monocrystalline

Canadian Solar - monocrystalline Sharp ND167U - polycrystalline Sharp NE170U - polycrystalline Sharp NT175 - monocrystalline Suntech - monocrystalline

Methodology – Leaching and Analysis PV



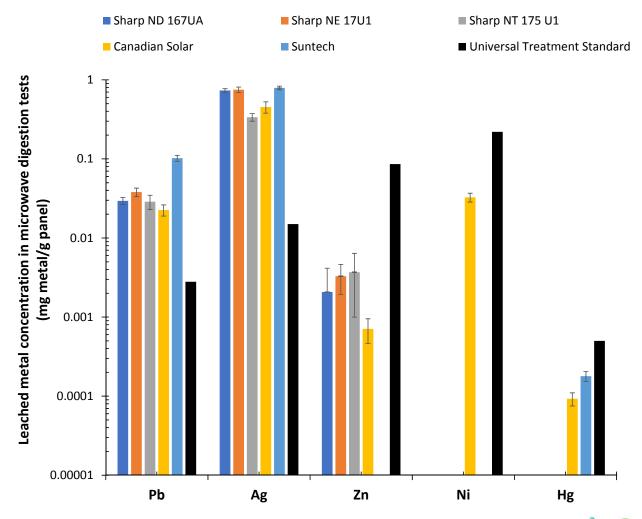

- Determine area/parts for representative sample
 - PV cells, tempered glass, back mounting material
- Sample preparation
 - Particle reduction/solid-liquid separation if needed
 - Needed due to surface to mass ratio < $3.1 \frac{cm^2}{g}$
- Sample agitation
- Sample filtration and preservation
- Sample Analysis
 - ICP-OES

http://www.nbg.kiev.ua/upload/image/scea/iCAP.pdf

Methodology - QD Displays

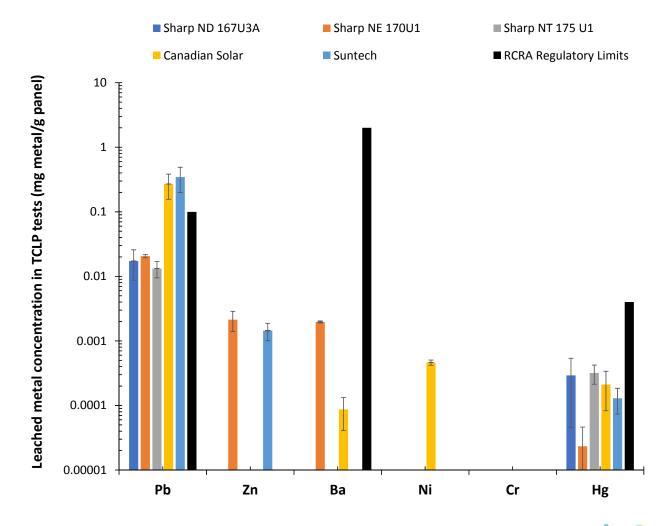
QD enhancement film is identified based on <u>Fluorescence Properties</u> under UV light .

Methodology – Leaching & Analysis QD Displays



- Determine area/parts for representative sample
 - Set 1 Film only
 - Set 2 Digitizer & display
 - Set 3 Remaining components
- Sample preparation
 - Particle reduction/solid-liquid separation if needed
- Sample agitation
- Sample filtration and preservation
- Sample Analysis
 - ICP-MS

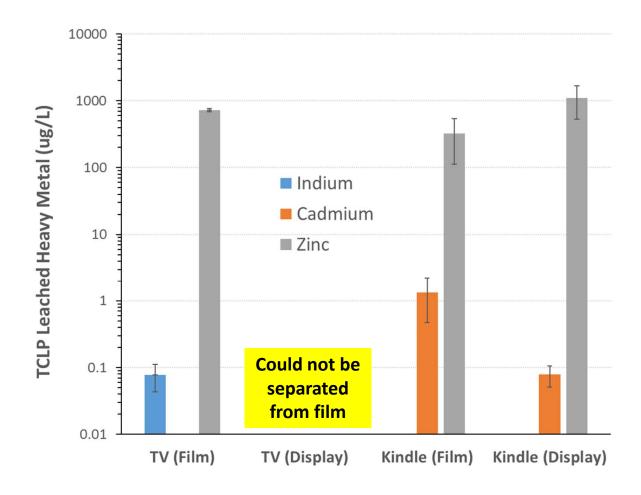
Results Total Heavy Metal Content Microwave Digestion


- Many RCRA Characteristic Hazardous waste metals potentially leachable.
 - D008 Lead*
 - D009 Mercury*
 - D011 Silver
 - * Possibility to exceed
- Universal treatment Standards
 - Nickel = 11 mg/L TCLP
 - Zinc = 4.3 mg/L TCLP

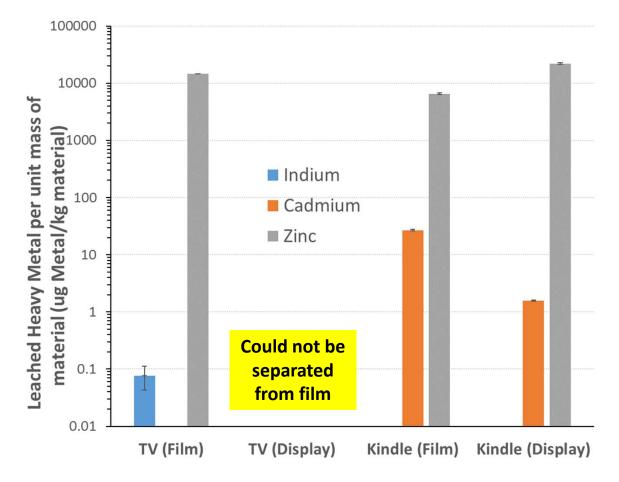
Results TCLP Leached Heavy Metal Content

- 34 elements analyzed,
- only 5 elements detected above MDLs
- Lead
 - only element found in concentrations that exceed RCRA regulatory limits
 - Possible source soldering
- Nickel,
- Zinc,
- Mercury

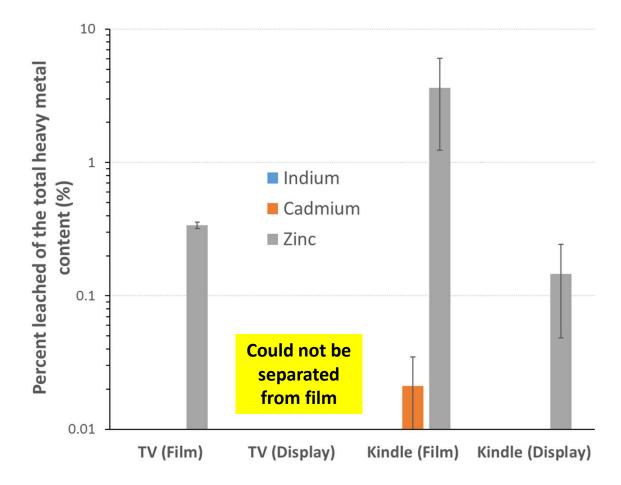
Results WET Leached Heavy Metal Content


- Qualitative results similar to those found from TCLP
 - Lead dominant element
 - Detectable levels of Chromium
 - below California's regulatory limits.
- PV Crystallinity does not have significant effect on release of heavy metals

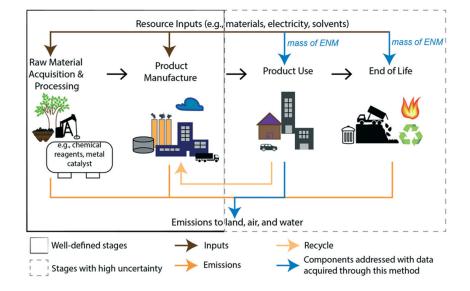
TCLP Heavy Metals of Concern Leached from QDs


- RCRA Regulatory Level
 - D006 = 1000 μg/L
 - Far below regulatory Limit.
- 40 FCR 268.48 Universal treatment standards
 - Cd: 110 μg/L
 - Zn: 4,300 μg/L
 - Far below regulatory Limit.

Leached Heavy Metals from QDs per mass of material


- High Zn content in:
 - Film material
 - Total Display
 - From electronics and ZnS?
- Indium content
 - Negligible
- Cadmium content
 - 10 50 ug/kg
 - Much higher CdSe QD content than InP QD

Percent leached of the total heavy metal content


- Generally heavy metal leaching
 - < 1 %
- Except Zn from film
 - 1% 7%
- Not a concern but...
- Potential implications for
 - Release
 - Landfilling
 - Incineration

Implications for LCA

- PV cells and DQ film will likely maintain their integrity at the EoL
 - Due to encapsulation by glass, casing, film layers, etc.
- Exposure likely to increase only with handling (production) and recycling (EoL).
- Given low leachate contaminant concentrations,
 - EoL environmental impact should be insignificant.
- Probability for hazardous waste classification is low,
- CAVEAT:
 - PVs and next generations may not met LDR requirements as a result of Zn or similar element leaching.

Acknowledgements

- Frank Brown, Arizona State University
- Yuqiang Bi, Arizona State University
- Shauhrat S. Chopra, University of Illinois at Chicago
- Jared Schoepf, Arizona State University
- Jasmina Markovski, Arizona State University
- Thomas Theis, University of Illinois at Chicago
- Paul Westerhoff, Arizona State University

Funding Sources

